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Abstract

Lot A bean e <o matnis with s = 5, Then one form of the smgular-value decomposition of .4 i

A=t zv

whure £7and Ve orthogonal and X s square digonal. That s, L — e WV — F i rank A e

Vos ik 0o s s ol

a0 - 0 0
0 s 0 0
X
00 0
0 N e it Frasa
IsarankiAy < koA diugonal watns, Inaddivton g = a2 = =m0 e D The ot s are called the vingmdar

veebrees of A and thetr number 1s equal o the vank of AL The ratio @y A 4, <o he regarded as a condition nunther
ul the matrix A,
I is casily veritied that the singular-value deconmposinon can be also wiitten as

Fizine

A—tTav= Y el
[

The matris o e, is the enger prodict of the f-th row of U with the corresponding row of ¥, Note that cach of these

matriees can be stored using ondy o oo Tocations rather than s locations,
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Using hoth forms presented above—and following feery UL beavuiul approach in the Calenlus and Mathie-
aaated book series [Matrices, Geometry & Muathemanea, Math Everywhere Incl 19997 we show how SVID can
be used as w ool for teaching Lincar Algebra geomewically, and then apply it solving least-squares problems and
I data compression.

In this paper we used the Computer Algebra syvstemn Mathematioo 1o present a purely numerical probicm. In
encral, the use of Computer Algebra sysieimns has greatly intfluenced the teaching ol mathematics, allowing students
o concentraie on the main ideas and to visuadize them.

43 2004 IMACS. Published by Edsevier BV AL rights reserved.

Kevwords Applicitions: Smgular-value decompesitions: Hanger: Streteher:s Alioner

1. Introduction

In this section. woe introduce the staple “ingredicents”™ ol any matrix, namely the hanger. stretcher and
aligner matrices. Ax we will see. any mateix can be written as the product of a hanger, a stretcher and an
aligner o,

W begin our discussion with the coneept of a perpendicular frame in the two-dimensional space (2D).
W resirict our attention to 21 spaces. and hence. to 2 » 2 matrices. Extensions w higher dimensions are
casily made.

A 21 perpendicular frame consists of two perpendicular anit vectors which can be specilied by an

attgle s. Ax an example, consider the unit vectors perplrame| ) = {cos(s). sin (83} and perpframe| 2] --

feosty — 772, sindy b7/ 20 ) Tor which
perpirame[f] - perpirameli] = 1,
(=1 2vand
perpframel 1] - perplrame] 2] =
Using these two perpendicular vectors as columns or rows we can define, respectively, the hanger or the

aligner malrix.

F 1 Huneer netrices for Inoneing a curve onr g perpendicofor fiome
: K L .

Giventhe perpendicularitame perplramef 1] = Jeostsh sinisif, perpframe[2] = {costs+77/20. siniy

7721, the hanger matrex defined by it s
_ T,

CONishCos [.\' f )

.

hanverivi —
L _ o T
SHE LAY Sin (.\' — - )

whore perplramie] 1 and perptrame] 2] are the two columns, To see its action on a curve, sct the angle
s lor the hanger matrix (o s = 774 and consider the ellipse {x(7). () = {L.5cosi(z), 0.9 sin(n). n ils
parametric torm tiag. b
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Figo oA perpendicalar Tramess = o4 teecther woth anellipse “hune™ oo the v ases,

We mention in passing that this s riefir fand perpendicutar frame because we mentally rotate
it pushing perpframe( 1] onto the v-axis, perpframe{ 2] awtomancally aligns with the posiive v-uxis IF
perplrame| 2| aligns with the negarive y-uxis, we are dealing with aZeft frand perpendicuiar frame.

Clearly, the cllipse ts hwg on the v v axes. The vt vectors (i, 0 and {0, 1} form a perpendicular
frame and the vectors detined by the points on the ellipse are ol the fornu

fain, vy = vin{b o) = vinoo 1)

This mcans it w pet wea point fyin. vy} on the onginal curve, we advance v(7) units in the direction
of {1, 0} and then viry units 1o the direction of 40, 1),

To hang the clipse on the given perpendicular franie, all we have to do (o the above expression is
to stmply replace {100} by perptrame] 1 and {0, 1} by perplrame| 2[. To wit, the yvectors delined by the
points on the ethpse now becom:

hungellipsets) = vinperpirame! ] = staperpirame| 2]

This means thatto vettoa pointfaizy, vz on the new, hung cllipse. we advance vezh units in the direction
ol perpirame] L] and then vid units i the direction of perptranw] 2].

This can be explained in erms of maunx operations, Every point {xvteb vin] of the original ellipse is
multipiicd by the hanger matrix. hangeresh. resulting in the new hung cllipse

T
VAP R (.\' + *)
. . 2 )
hungellipsetn = .
: . T SN
s iy) o osin (.s + 3 :
The result s shownn Fia, 2,
That is. perptrame] 1] is plaving the former role of { 1.0} and perpirame]2] is playing the former role
of {01} I summary, multiplying the parametrte forn of @ curve by ahanger matrix results i the curve
hetng hung on the perpendicular frame defining this matrix.
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Fig, 20 The ellipse “hine™ oma perpendiculir rame.

Some thought also reveals that roration matrices are hanger matrices coming from right hand per-
pendicular frames: by contrast. hanger matrices coming from left hand perpendicular frames are sor
rotations—they incorporate a flip.

Morcover, 10 undo the “hanging”™ of a curve on a perpendicular (tame we have to multiply (he new
curve with the inverse of the hanger matrix. Pure algebraie operations reveal that the inverse of the hanger
Matnx s iLs ranspose!

1.2 Aligner matrices for aligning a corve on ifie ¥ v dyes

Given the perpendicular trame pecptrame| 1] = {eosisy, sim {53} and perpframe[2] = {cos(s=m7/2). sin (s+

/23, the aligner matrix defined by stis:

cosiy) SI(§)
aliener{s) — T . T
COs (.»‘ 1- ) SN (.s : )
. 2 2/
where perpframe| 1] and perptrame| 2| are the two rows, To scee its action on a curve, suppose we are given

the same perpendicular frame as above (e, s = 779 und the ¢llipse hung on il as shown i Fig. 2. The
task 1s W align the ellipse 1o the x- v axes.
We know that the parametric equation of the hung ellipse ix

hungellipsetr) = xrperplirame| 1] + vinoperplrame] 2}

Resolve now {vin. v(n)) into components in the directions of perpframe[ L] and perpfrasmie 2] using the
fuct that the projection of any vector x on another vector ¥ 1s ((ov)/(vvd)y. Then, the parametric cquation
ol the hung ellipse becomes:

hungellipse(s) = ({a(n). y(0)] - perptrame| T perpframe|[ 1]

+i{xin), yir}] - perplrame| 2 hperptrame[ 2.
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Repiacing now the dast perplrame] 1] by {1, 0F and the last perpleame| 2] by {00 1] we obtain the cliipse

alligned o the v—y axes:

altgnedellipsetry = (L) v - perplraae | L O - (Ui, vty - perplrame] 2DH00 1)

Hatry vt perptrame] T [y, yin} - perpiramet 2.

The [astexpression is equivalent w

. COsfy) s () )

alignedellipsetn) = : T . - ( . ) )
Cos (\ -+ 5) sin (.\' b -3) LY

I summary, multiplying the parametrie formn of o curve hung on a perpendicular frume by an aligner
matrix defined by this frame results 1y the curve being shgned with the v -y axes (Fig. 1),

Provided we are dealing with the same perpendicular iraine. note that the aligner matrix (which is the
transpose of the hanger matrix) wadoes what the hanger matrix does, That is, one 15 the inverse of the
other:

COsivl Cos (_\' T

13, 4

)‘ ’ COs{y) S {80 ' TS

sin{a) o sin (sl— ) | _\C()ﬁ(i" _‘g) sin ('HL %) ) b

Al

T,

Igr vt

130 Bicgonal matrices —the x v steicher

Anocther name for the 2D diagonal matnx is cv-stretcher, The reason for this other name s that when
we aultply acurve by a dingonal matrix all measurements along the v and v axes are stretched out. As
an example consider the diagonal matrix

1
o =— ( ) .
02
which multiplics every point of the unit circle given in parwmetric foran. The result iv shown in Fig. 3.
where 1t can be scen that all measurements along the a-axis have been sretched by a factor of 4 (the
et Lactory and all measurements along the v-axis by a factor of 2 ithe vy, factor,

To iivert the stretcher matris o we have o unde what multiplication by o did: that is, we have to shrink
all measurements dlong the v-axis by g tactor ot 4 and all measurements along the y-axis by a factor of
2. So. the inverse of o is the casily computable matrix

-
()
(!l: 4 1
v -
2.
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Fas 30 The onit cicele afrer it has been multiplicd by the diggonat matris of above,
140 SVD analvsis of 21 muatrices
SV analysis tells us that every matrix can be duphicated with the staple ingredients: huanger, stretcher
and aligner. To show how this is done, constder i 20D matris
( 08568 042794 )
mo— _ -
L.ol437 103518

Denote by falienerirame| 1], alienerframe| 2[4 the aliguer frame. by v e, and v the streteh factors
and by {hangertrame| 1], hangertrame| 2]} the hangertrame. Note that by stimple maieix operations it is

castly vertficd dat i
= hangeriy istretcheraligner(ss)

then

mo-alignertrome| 1] — v hangeriramel

and
e alignertrume] 2] = v enhangertramef 21

Thie ubove formulae subsume the eigenvectors/eivenvalues formulae. where tor example we have
ar - alignerirame| 1 = v alignertrame] 1.

To duplicate this matrix ae means coming up with an aligner frame, streteh fuctors and o hungerframe so
that

o= hunger(s - sretcher - aligneris-b
First set

. _ , . _ . Ty —
talignertrarie| V). alivnerframie[ 2]} = lcosts), sim (s} {L‘UH (.\ + _7.) . sn (s T3 ) } }

tor the two ve
(rer - alig

The Tatter sim
and the aligne

{ubignert
In matrk forn

aligner(s

Using the fact

Al

NICRE
and

FMaraeh =
from which w
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Finally. the ve

hangertr:
and

hangerir:
In malrix fonr
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and we need ¢
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[ 1s easilv

m = han
48 WS exprech
alignertr

altgnertr:
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for the two vectors of the abigner tramie and then compute an s that makes
o - alignerframe[ ] - (n - alignerfriome] 210 = 1

The latter simply states that the aligner frame 1s o perpendiculir frame. nour case s = 0.582922 ruduins,
and the wligner frame becomes

{alignerframe| 1], alignerirame[ 21 = {{{(LS33858. 0.550466]. { —0.550466. 0.834858] ).
In malrix form we have

. (834838 0550466
alignerfs:y — ( _ _ _ .
C - 530460 (834858
Using the fact that the vectors of the aligner frame we of length 1 and perpendicular, we nest compute
Xoronn = |l - alignertrame 1) = 1.92052
and
Nt = [ alignerfrime| 2] —= 0044353,
from which we see that the didgonal matrix is

C1.UA2 () ;
stretcher = ( . ) .
; 0 ().d4353

Finully. the vectors of the hangerframe are computed from the equations

1
hangertrame[ 1] = aralignerivamel| 1] — {0.0350775, 0.998482}
AT
and
|
hangerframe] 2] = o alignertrame| 2] = 0998482, —0.0550775),
Mareiea

In mcrix form the hanger imatris is

00330775 (LIYRISE2 )

hanger{s) ) = ( . _
N 0998482 —(0330775

and we need (0 note that there s a new angle correspondimg e the hangerlrame. nameiy s, = L5569
radinns!
10 is casily veritied that

s = hanger(s, ) - ostretcher - alignertss)
as was expected. We also mention in passing that s — v only for svammetrical matrices, in whieh case

alignerframe| 1] = hangerfranie] 1] = cigenvector| 1],

alignerframe| 2| = hangerframe 2] -- cigenvector| 2]
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and
Napet — vtgenvahue| T
Foapendy = cigenvilue] 2.

2. SVD applications in education

As we mentioned inthe abstraet, the eaching of Inear alechra concepts is gready enhanced and
facilitated with the use of SV analysis and Computer Algebra systems. Further we see how to explain
the action of a4 matrix on o curve. when the inverse of 4 matrix does not exist—and what this means
geonelrcally, and the relaton between the inverse and the transform ol 4 miatrix.

2o Action of comairix oma cierve

Consider the same matres s analy ced o Secoon 14 that s

L5568 0427949 )
] =
! ( 61437 1.03518

and et us see the result of muliplying & curve times this mareix. For a curve, constder the unit circle
shown in Fig. 4

futoy, v = {eosty, sinind. (-2 = 2,

The curve we obtain affer we multiply the unit circle n Fig 4 times the matrix o is an ellipsed!) and is
showin i g, 3.

An explanavoen for this phenomenon is given by the SVD analvsis of s which has been done in
Section L4, In that section we expressed

m — hungeris b - stretcher - abeneriss).

Fig. o The umic circle before it hus been multiplivd times the matrix s ahove.

We conelu
1s being pe
Note ho
10, 0} —mg
Nexliti
Note hov
ments alon
Finally, t
in lig. 8
115 the ¢
is due o th
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Fig. 5. The untt circle became an ellipse efier it was multiplied times the nudrix ae above,

We conclude that when we form the product e - [utz). vig))o 1t is the product afigneris-) - {vif. v{21} that
is being performed first. The result of this multiplication is shown in Fig. 6.

Note how the aligner frame has been aligned with the v- v axes and the dor—that was at the point
10, B)-—mtoved clockwise.

Next. 1t is the product stretcher - tadigner(s>y - {r(r). ytny}) that is being formed. The result is in Fig. 7.

Note how the measurements aleng the v-axis have grown by a factor of 192052 whereas the measure-
ments along the v axis have shrunk, multiplied by 0.44353,

Finally. the product hanger - {stretcher - (aligner(s>) - fvtr), vin ) is being formed. The result is shown
in Fig. §.

It s the end reselt. and the ellipse 1y hung on the hungerframe of matrix e, The (inal ip of the point
is due to the hanger frime being a lett hand perpendicular {frame.

|

Fiz 6. The wnit ctrele grer it wus multiplied tiotes the aligner matrix of s abosve,
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P

Fig. 7. The unit circle afier it was multiphied tiees the aligner and the stretehier matrices o me abowve.
2.2 Marrices that canniat be verted
In the matrix s we used before, let us change the steetcher matrix sowewhat: namely, let us form the
matrix

C 192052

Hlew — hanger{s - ( 0 iy ) calignertsyy,

where the v-streteh tactor is 0, Ax can be casily checked., the matrix ., Das no inverse, which means s

determinant is 0 This Teads 1o the alternative definition of the determinant of 2 matrix, as the product of

the streteh factars, Multiplying now the unit cirele umes s, - we obtain the straight line shown in Fip. 9.

What happened here is that two points of the ellipse have been deposited on the same point on the line.
Since we cannot tell which part of the ellipse they came Tron. 10is nnpessible w undo the maltiplication
times the manris #r ., .

Fig. ¥ Vhe unin virele afzer i was muodtiplicd times the aligner, the streteher and the hanger matrices of s above,

1t shouly
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i

Fig. W The unit cirele after ttwas multiplicd times the non invertible matres e o ahove.

It should be added that the mverse of the hanger and aligner matrices always exists sinee it is the transpose
of the corresponding matrix, (17 these matrices are orthogonal, then their pseudoinyerse is the transpose
ol the corresponding matrix. Recall that for any matrix A we have PseudolnversetA) = 1474y A7 (4]
It is only when the mverse of the stretcher matrix does not exist that the inverse of a mairix s does not
exist s well.

3. SV tor solving linear least-squares problems
The least-squares problem anses when we try to it the polynomal

B _' y- |
fivy=¢ 4 esn ey et

to some dita points {ex, v = 1o cmg where i< . Compare this with interpolation where we
choose the degree 1 — | ol the polynomial high enough to pass through all the pomts: w0 wil 1 = i,
A further generalization ot the lincar least-squares problem is to take o linear combination of basis

functions { fiixd oL fala)

Jr = o [l L es ol b Ry £,

but we will think of the basis functions { £, 0v). f2(x). ... fufarasbeing the powersof v v . w1

Note that in our case i = arp we have an overdetermined system of equations, 1.¢.. there are more
cquations than there are unknowns, By forcing i of the eguations 1o be exactly satishied we may cause
the others to exhibit large errors. Theretore, we would Tike to choose values that allow all of the equations
o be approximately sanistied mnstead of (oremg 7 of them 1o be exactly satsfied.

The best approximation ., (o the given data by a lincar combination of busis functions is the one
for which the residuals v, - e v ) are smallest™. Among the various possibilities for measuring the
size of the restduals we take the quantity

l Z [y — _f”(-\.'}i:-
=
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The problem of htting a polynomial of degree # — 1 can be written as

[ SR LAY 4+ - }
¢ + ooy f +
T R S BT

which denotes an overdetermined system of linear equations because o= i, Also recall that the s, and
v, are given and that the ¢; are the unknosws,
[n matrix torm we have Ae = oy where A s a nonsquare "™ matrix. the unknown ¢ 15 a “short”

vector, and yois a T tall™ vector:

| ! ;
The residual vector 1s
r=y— Ac
Using the Euclidean norin.
leelis = 2_:“
the least-squares problem becomes

min ||y — Aell-.
;

A known solution 1o the ledast-sguares problem is the solution ¢ 1o the linear system

Alde = ATy

which dre known as the naorial eqreations. A less known solution 1o the least-squares problen is obtained

using SV analysis of A as shown below,

We have A — U7 2V and

by - Aell: — Iy — U/ Vel = Uiy - U/ TVe)

since U0 = frmi.

=y - Ive

Denuat

W can
Minnue

¢ —

lxample

the vears

l \

b

We vt
should b
Fepreser

Cr Sy

The SVI

further:

I
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Denoting £y by d. Ve by 20and rank (A} by r.we have

l| =y ~I_
. A ‘ (f_‘ — F 7 .
1y A =d -yt e | ' ‘ ={di—o 24 S d - A
‘1 |
I\ d —o.z, | A
| We can now uniguely select the 2, = o /o for i = 1oL orank(A) o reduce this expression 1o 1ts

minimum vidue. The soiution to the feast-squares problem is then obtained from Ve = o
¢ = Pscudolnverset Vi = V72

Fxample: The following data depicts the growth ol the populiation tin millions) in the United States lor
the years 19060 throueh 1970

(' (900 1910 14920) 1934 1910 1930 19960 1970 )
i TANY 9197 J0STL 12275 43067 15069 17932 20321 )7

We want o fita polynoniial of degree 2 1o these points, To wit. the polynowial fixvy = ¢ — ¢av 4 ¢ay”
should be such that fix, ) should be as close as possible to v where the points v, v o= 10200, .8
represent, respeetively, the vear () and the population €y, ).

Our system ol equations Ae = yis
1900 3010006 7599
11910 3648100 91.97
I 1920 3686100 { . 105.71
11930 3724000 | [ © 122.75
torodo 3763600 [ 11 T 13167
(1950 asoason | N 150,69
11960 3841600 179.32
I 1970 3880900 kzm.z] /

The SVD analysis of the matrix A = U7 XV is oblained with the help of Mathematica and is shown
{urther:
0340 034 —0.348  -0.352 0355 —0.359  -0.363  —0.366
' {i= | =0543 —0.393 - 024 0089 0.065 0.22] (1378 0.537
‘ 0546 0081 —0229 —0385 -0.386 —0.23 0073 0534

105947 - 17 0 0
3 () 61,7746 {
0 0 0000346202
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o 6800 10T —0.000516570 —1.
Vo= —0.0010336K —(1,999494 0.00051657Y
11.999999 —0.00103368 267087 . 10

We set £y =d = [—377.813, 104,728, 13.098)" and compute

1

= [ 00000336605, [.616%1. 37833147

F

by dividing o, Jo = 1.2, 3 (We will not concern ourselves with analyzing the condition number of

this matrix- —and there something 1o be said about it here.)
The solution to the least-squares problem s then obtained from Ve = o

= Vs = (378331, J0.7242.0.0109756} ",

and is the same obtained using the function Fit in Mathematica. (See | 51 for a discussion on the problems
of thix function and on robust regression.)

4. SVD and data compression

In this section, we will use the second form of the singular-value decomposition. nanely:

“antho b

A== ol
o

where the matrix !

i, 1% the outer producr of the i-th row ot {7 with the corresponding row of V. Since
cach of these matrices can be stoved using only w — n locations rather than ma tocations, this form is
suitahle for applications in data compression,

Data compression will be used on the following problem from [3]. cloguently solved in [ 1], “"Suppose
that a satellile in space is taking photographs of Jupiter to be sent back (o carth. The satellite digitizes the
picture by subdividing it into tiny squares called pivels or picture clements, Each pixel is represented by
a single number that records the average hight mensity i that square. 1§ each photograph were divided
uto 300 x 304 pixeds. it would have to send 250, 000 numbers o earth tor cach picture. ('This amounts
to a SO0 murix.) This would take a great deal ol time and would Timit the number of photographs that
could be transmitted. Itis (sometimes) possible o approximate this matrix with & simpler” matrix which
requires less storage.”

Fetus start by looking at a “preture”™ of only four pixels in Fig. 10, The gray level specification for each
square 1s determined by the corresponding entry in the malrix A

0748611 0.H7564
( 0.263696  0.469433 )

Fig. 11 depicts the graphic generated by o 160D matrix A whose entries are numbers between 0.0 and 1.0
CA el 15 too large to be displayed!)

To reproduce this picture exactiy. we need 1o keep track of all ol the 256 (= 16 x 16) entries of AL
Howoever. using SV anualyas ol AL we can approximately reproduce this image keeping track of much

less dita
nmatriy 4

RS
.41
().114
AREIR

Using only
1 ==

and the ce
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0.44%433

Fig T Preture based om a 28 matres whese entiics ane numbers begween 0.0 and 1

less datas To compress the datacwe set the smaller singular values to zero, The singular values of the ToD
matres A e
T6H3116 3.64554 362529 (LOKI207
QOS81537  QLOOGO4RE  0.0533387  OUHRT3SY
D.d6e60u4  G.0340483  L0314d706 00261613
00187258 0.0133512 0.00733902 0.003536133

Lising only the first 3 singular values of A (the ones = 11 we have

T

! N i
A= E o T R 2 el
: il

and the compressed image is shown in Fig, § 2.

Fago D1 Pioture based ona LoD matris whose enteies are numbers hetween 0.0 wnd 1.0k
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Fg. 120 Piciure generited usine omly 3 singuar vidues cand their corresponding roses ol £ and Vo of the 1613 mutrs above,

The satcliite transmits the following dati tor the compressed image: the st 3 rows of & the first 3
singular values and the first 3 rows of V. And then the recipient on earth forms the 16D matrix

!
E GRS

To wit. the satelhite ransmits 3 % 16— 3 4+ 3 x 16 — 99 elements. This i< a ot less data than the 236
clements tat would have (o be transmiticd otherwise In our case.

5, Conclusions

The singular-value decomposition s over o hundred years old. Tor the cuse ol square matrices, it
was discovered independently by Beltrami in 1873 and Jordan n 1874, The eehnique was extended 1o
rectingular matrices by Eckart and Younyg i the 19305 and its use as a computational ot dates back

o the 19607s. Golub and van Loan [2] demonstrated its usetulness and teastbility in o wide variety of

applications.

Diespite its history, singular-value decomposition of matrices is stitl not widely used in education. The
book by Davis and Uhl [ 1]1s the only one known to the authors that—together with the Computer Algebra
system Muathentico—nhases an entire lingar algebra cowrse on this concept. Hopefully, our presentation
has contributed something to the eifort w acquaint university teachers with the beauty of this subject,
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